MATH 301

INTRODUCTION TO PROOFS

Sina Hazratpour Johns Hopkins University Fall 2021

- What are proofs?
- Why proofs?
- Examples of proofs

Overview

1 Introduction

2 Two examples of mathematical proofs

What is a proof?

You are in Amsterdam in the year 2021 and you want to visit both Rembrandt Museum and Van Gogh Museum.

Single Canal, Amsterdam - Image by: Koen Smilde

Statement: There is a path from Rembrandt Museum to van Gogh Museum crossing exactly six bridges.

What is a proof?

Statement: There is a path from Rembrandt Museum to van Gogh Museum crossing exactly six bridges.

Proof:

Source: Google Maps

Why proofs?

- Mathematical proofs have two purposes:
 - to convince oneself and others of truth of various statements,
 - and to convey mathematical ideas and methods.
- In the second and third lectures we will focus on the first purpose by giving precise rules for writing proofs.

2 Two examples of mathematical proofs

Proposition.

If a is positive real number then $a + \frac{1}{a} \ge 2$.

Proposition.

If a is positive real number then $a + \frac{1}{a} \ge 2$.

We give many proofs of the proposition above. Below is the first proof:

Suppose *x* is a non-zero real number.

Suppose x is a non-zero real number. Note that

$$0 \le (x - \frac{1}{x})^2$$

= $x^2 + \frac{1}{x^2} - 2x \frac{1}{x}$
= $x^2 + \frac{1}{x^2} - 2$

Suppose x is a non-zero real number. Note that

$$0 \le (x - \frac{1}{x})^2$$

= $x^2 + \frac{1}{x^2} - 2x \frac{1}{x}$
= $x^2 + \frac{1}{x^2} - 2$

Therefore,

$$x^2 + \frac{1}{x^2} \geqslant 2.$$

Suppose x is a non-zero real number. Note that

$$0 \le (x - \frac{1}{x})^2$$

= $x^2 + \frac{1}{x^2} - 2x \frac{1}{x}$
= $x^2 + \frac{1}{x^2} - 2$

Therefore,

$$x^2 + \frac{1}{x^2} \ge 2.$$

Let *a* be a positive real number.

Suppose x is a non-zero real number. Note that

$$0 \le (x - \frac{1}{x})^2$$

= $x^2 + \frac{1}{x^2} - 2x \frac{1}{x}$
= $x^2 + \frac{1}{x^2} - 2$

Therefore,

$$x^2 + \frac{1}{x^2} \geqslant 2.$$

Let *a* be a positive real number. There is some real *x* such that $x^2 = a$.

Suppose x is a non-zero real number. Note that

$$D \le (x - \frac{1}{x})^2$$

= $x^2 + \frac{1}{x^2} - 2x \frac{1}{x}$
= $x^2 + \frac{1}{x^2} - 2$

Therefore,

$$x^2 + \frac{1}{x^2} \geqslant 2.$$

Let *a* be a positive real number. There is some real *x* such that $x^2 = a$. Hence

$$a+\frac{1}{a}=x^2+\frac{1}{x^2}\geqslant 2\,.$$

Theorem (AM-GM inequality for two real variables) For two non-negative real numbers x and y,

$$\sqrt{xy} \leqslant \frac{x+y}{2}$$

Theorem (AM-GM inequality for two real variables)

For two non-negative real numbers x and y,

$$\sqrt{xy} \leqslant \frac{x+y}{2}$$

Corollary.

If a is positive real number then $a + \frac{1}{a} \ge 2$.

Theorem (AM-GM inequality for two real variables)

For two non-negative real numbers x and y,

$$\sqrt{xy} \leqslant \frac{x+y}{2}$$

Corollary.

If a is positive real number then $a + \frac{1}{a} \ge 2$.

Proof of corollary.

Set x = a and $y = \frac{1}{a}$ in the theorem above.

Suppose x and y are non-negative real numbers.

Suppose x and y are non-negative real numbers. Since xy is non-negative, $\sqrt{xy} \leq \frac{x+y}{2}$ if and only if $xy \leq \left(\frac{x+y}{2}\right)^2$.

Suppose x and y are non-negative real numbers. Since xy is non-negative, $\sqrt{xy} \leq \frac{x+y}{2}$ if and only if $xy \leq \left(\frac{x+y}{2}\right)^2$. The latter holds if and only if $4xy \leq (x+y)^2$.

Suppose x and y are non-negative real numbers. Since xy is non-negative, $\sqrt{xy} \leq \frac{x+y}{2}$ if and only if $xy \leq \left(\frac{x+y}{2}\right)^2$. The latter holds if and only if $4xy \leq (x+y)^2$. But the last statement is valid since

$$(x + y)^2 - 4xy = x^2 + y^2 + 2xy - 4xy = (x - y)^2 \ge 0$$

Here is a geometric explanation of the inequality $4xy \leq (x + y)^2$:

Here is a geometric explanation of the inequality $4xy \leq (x + y)^2$:

Here is a geometric explanation of the inequality $4xy \leq (x + y)^2$:

A direct geometric proof of AM-GM inequality

Source: Wikipedia

Let *a* be a positive number. Hence we can find a real number *t* such that $a = e^t$.

Let *a* be a positive number. Hence we can find a real number *t* such that $a = e^t$. Therefore $a + \frac{1}{a} = e^t + e^-t$. Let $f(t) = e^t + e^-t$. Note that *f* is a function of $t \in \mathbb{R}$ and is symmetric about the y-axis, that is f(t) = f(-t). Note also that $f'(t) = e^t - e^{-t}$ which is positive for all $t \ge 0$. Therefore f(t) is increasing for $t \ge 0$ and decreasing for $t \le 0$ due to its symmetry about the y-axis. Hence the minimum of f(t) occurs at t = 0. Therefore, the minimum of $a + \frac{1}{a}$ occurs at $a = e^0 = 1$. Therefore, $a + \frac{1}{a} \ge 2$.

Theorem (J.J. Sylvester)

A finite collection \mathcal{P} of points in the plane has the property that any line through two of them passes through a third. Show that all the points in \mathcal{P} lie on a line.

Sources: JHU graphic and pictorial collection

Either \mathcal{P} is empty or there is a point in \mathcal{P} .

Either \mathcal{P} is empty or there is a point in \mathcal{P} . If \mathcal{P} is empty then the statement holds vacuously.

Either \mathcal{P} is empty or there is a point in \mathcal{P} . If \mathcal{P} is empty then the statement holds vacuously.Suppose \mathcal{P} is non-empty.

Either \mathcal{P} is empty or there is a point in \mathcal{P} . If \mathcal{P} is empty then the statement holds vacuously. Suppose \mathcal{P} is non-empty. Suppose the points in \mathcal{P} are not colinear.

Either \mathcal{P} is empty or there is a point in \mathcal{P} . If \mathcal{P} is empty then the statement holds vacuously.Suppose \mathcal{P} is non-empty. Suppose the points in \mathcal{P} are not colinear. Among pairs (P, ℓ) consisting of a line ℓ , passing through two different points of \mathcal{P} , and a point P of \mathcal{P} not on that line, choose one, say (P_0, ℓ_0) , which minimizes the distance d from P to ℓ .

Either \mathcal{P} is empty or there is a point in \mathcal{P} . If \mathcal{P} is empty then the statement holds vacuously.Suppose \mathcal{P} is non-empty. Suppose the points in \mathcal{P} are not colinear. Among pairs (P, ℓ) consisting of a line ℓ , passing through two different points of \mathcal{P} , and a point P of \mathcal{P} not on that line, choose one, say (P_0, ℓ_0) , which minimizes the distance d from P to ℓ . Note that d is well-defined since \mathcal{P} is non-empty and finite and there is some pair (P, ℓ) where P does not lie on ℓ .

Either \mathcal{P} is empty or there is a point in \mathcal{P} . If \mathcal{P} is empty then the statement holds vacuously. Suppose \mathcal{P} is non-empty. Suppose the points in \mathcal{P} are not colinear. Among pairs (P, ℓ) consisting of a line ℓ , passing through two different points of \mathcal{P} , and a point P of \mathcal{P} not on that line, choose one, say (P_0, ℓ_0) , which minimizes the distance d from P to ℓ . Note that d is well-defined since \mathcal{P} is non-empty and finite and there is some pair (P, ℓ) where P does not lie on ℓ . Let H be the foot of the perpendicular from P_0 to L_0 . There are (by assumption) at least three points P, Q, R on ℓ_0 belonging to \mathcal{P} . Hence two of these, say, Qand R are on the same side of H. Let Q be nearer to H than R. Then the distance from Q to the line determined by P_0 and R is less than d since $|QH'| \times |P_0R| \leq |P_0H| \times |HR|$ and $|HR| \leq |P_0R|$. This contradicts the definition of d. Therefore, the points of \mathcal{P} must be collinear.

Later in the course we will see more complicated theorems and proofs where our intuition and what proofs say begin to diverge.

Theorem

For any positive real ϵ , there is a collection $(U_n \mid n \in \mathbb{N})$ of open intervals such that together they cover all the rational numbers between 0 and 1 and the sum of the length of these intervals is less than ϵ .

Later in the course we will see more complicated theorems and proofs where our intuition and what proofs say begin to diverge.

Theorem

For any positive real ϵ , there is a collection $(U_n \mid n \in \mathbb{N})$ of open intervals such that together they cover all the rational numbers between 0 and 1 and the sum of the length of these intervals is less than ϵ .

The End

THANKS FOR YOUR ATTENTION!