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What is a proof?
You are in Amsterdam in the year 2021 and you want to visit both Rembrandt
Museum and Van Gogh Museum.

Single Canal, Amsterdam - Image by: Koen Smilde
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What is a proof?

Statement : There is a path from Rembrandt Museum to van Gogh Museum
crossing exactly six bridges.



What is a proof?
Statement : There is a path from Rembrandt Museum to van Gogh Museum
crossing exactly six bridges.
Proof :

Source: Google Maps



Why proofs?

• Mathematical proofs have two purposes:
• to convince oneself and others of truth of various statements,
• and to convey mathematical ideas and methods.

• In the second and third lectures we will focus on the first purpose by giving
precise rules for writing proofs.
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Proposition.
If a is positive real number then a + 1

a
> 2.

We give many proofs of the proposition above. Below is the first proof:
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Proof.
Suppose x is a non-zero real number.

Note that
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Another proof: The proposition we want to prove is a corollary of a more general
theorem known as inequality of arithmetic and geometric means.
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Another proof: The proposition we want to prove is a corollary of a more general
theorem known as inequality of arithmetic and geometric means.

Theorem (AM-GM inequality for two real variables)
For two non-negative real numbers x and y ,
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Corollary.
If a is positive real number then a + 1
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Proof of corollary.
Set x = a and y = 1

a
in the theorem above.



Proof of theorem.
Suppose x and y are non-negative real numbers.

Since xy is non-negative,
√
xy 6 x+y

2
if and only if xy 6

`
x+y
2

´2. The latter holds if and only if
4xy 6 (x + y)2. But the last statement is valid since

(x + y)2 − 4xy = x2 + y 2 + 2xy − 4xy = (x − y)2 > 0 :
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Here is a geometric explanation of the inequality 4xy 6 (x + y)2:

Question: Does a geometric illustration/ explanation count as a proof?



Here is a geometric explanation of the inequality 4xy 6 (x + y)2:

Question: Does a geometric illustration/ explanation count as a proof?



Here is a geometric explanation of the inequality 4xy 6 (x + y)2:

Question: Does a geometric illustration/ explanation count as a proof?



A direct geometric proof of AM-GM inequality

Source: Wikipedia



A proof using calculus

Let a be a positive number. Hence we can find a real number t such that a = et .

Therefore a + 1
a
= et + e−t. Let f (t) = et + e−t. Note that f is a function of

t ∈ R and is symmetric about the y-axis, that is f (t) = f (−t). Note also that
f ′(t) = et − e−t which is positive for all t > 0. Therefore f (t) is increasing for
t > 0 and decreasing for t 6 0 due to its symmetry about the y-axis. Hence the
minimum of f (t) occurs at t = 0. Therefore, the minimum of a + 1

a
occurs at

a = e0 = 1. Therefore, a + 1
a
> 2.
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Theorem (J.J. Sylvester)
A finite collection P of points in the
plane has the property that any line
through two of them passes through a
third. Show that all the points in P lie
on a line.

Sources: JHU graphic and pictorial collection

https://jscholarship.library.jhu.edu/handle/1774.2/46193


Proof by contradiction.
Either P is empty or there is a point in P.

If P is empty then the statement
holds vacuously.Suppose P is non-empty. Suppose the points in P are not
colinear. Among pairs (P; ‘) consisting of a line ‘, passing through two different
points of P, and a point P of P not on that line, choose one, say (P0; ‘0), which
minimizes the distance d from P to ‘. Note that d is well-defined since P is
non-empty and finite and there is some pair (P; ‘) where P does not lie on ‘.
Let H be the foot of the perpendicular from P0 to L0. There are (by assumption)
at least three points P;Q;R on ‘0 belonging to P. Hence two of these, say, Q
and R are on the same side of H. Let Q be nearer to H than R. Then the
distance from Q to the line determined by P0 and R is less than d since
|QH′| × |P0R| 6 |P0H| × |HR| and |HR| 6 |P0R|. This contradicts the
definition of d . Therefore, the points of P must be colinear.
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Later in the course we will see more complicated theorems and proofs where our
intuition and what proofs say begin to diverge.

Theorem
For any positive real ›, there is a collection (Un | n ∈ N) of open intervals such
that together they cover all the rational numbers between 0 and 1 and the sum
of the length of these intervals is less than ›.
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The End

Thanks for your attention!
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