MATH 301
 INTRODUCTION TO PROOFS

- What are proofs?
- Why proofs?
- Examples of proofs

Sina Hazratpour
Johns Hopkins University
Fall 2021

Overview
(1) Introduction
(2) Two examples of mathematical proofs

What is a proof?

You are in Amsterdam in the year 2021 and you want to visit both Rembrandt Museum and Van Gogh Museum.

What is a proof?

Statement: There is a path from Rembrandt Museum to van Gogh Museum crossing exactly six bridges.

What is a proof?

Statement: There is a path from Rembrandt Museum to van Gogh Museum crossing exactly six bridges.
Proof:

Why proofs?

- Mathematical proofs have two purposes:
- to convince oneself and others of truth of various statements,
- and to convey mathematical ideas and methods.
- In the second and third lectures we will focus on the first purpose by giving precise rules for writing proofs.

Overview

(1) Introduction
(2) Two examples of mathematical proofs

Proposition.

If a is positive real number then $a+\frac{1}{a} \geqslant 2$.

Proposition.

If a is positive real number then $a+\frac{1}{a} \geqslant 2$.
We give many proofs of the proposition above. Below is the first proof:

Proof.

Suppose x is a non-zero real number.

Proof.

Suppose x is a non-zero real number. Note that

$$
\begin{aligned}
0 & \leqslant\left(x-\frac{1}{x}\right)^{2} \\
& =x^{2}+\frac{1}{x^{2}}-2 x \frac{1}{x} \\
& =x^{2}+\frac{1}{x^{2}}-2
\end{aligned}
$$

Proof.

Suppose x is a non-zero real number. Note that

$$
\begin{aligned}
0 & \leqslant\left(x-\frac{1}{x}\right)^{2} \\
& =x^{2}+\frac{1}{x^{2}}-2 x \frac{1}{x} \\
& =x^{2}+\frac{1}{x^{2}}-2
\end{aligned}
$$

Therefore,

$$
x^{2}+\frac{1}{x^{2}} \geqslant 2 .
$$

Proof.

Suppose x is a non-zero real number. Note that

$$
\begin{aligned}
0 & \leqslant\left(x-\frac{1}{x}\right)^{2} \\
& =x^{2}+\frac{1}{x^{2}}-2 x \frac{1}{x} \\
& =x^{2}+\frac{1}{x^{2}}-2
\end{aligned}
$$

Therefore,

$$
x^{2}+\frac{1}{x^{2}} \geqslant 2 .
$$

Let a be a positive real number.

Proof.

Suppose x is a non-zero real number. Note that

$$
\begin{aligned}
0 & \leqslant\left(x-\frac{1}{x}\right)^{2} \\
& =x^{2}+\frac{1}{x^{2}}-2 x \frac{1}{x} \\
& =x^{2}+\frac{1}{x^{2}}-2
\end{aligned}
$$

Therefore,

$$
x^{2}+\frac{1}{x^{2}} \geqslant 2 .
$$

Let a be a positive real number. There is some real x such that $x^{2}=a$.

Proof.

Suppose x is a non-zero real number. Note that

$$
\begin{aligned}
0 & \leqslant\left(x-\frac{1}{x}\right)^{2} \\
& =x^{2}+\frac{1}{x^{2}}-2 x \frac{1}{x} \\
& =x^{2}+\frac{1}{x^{2}}-2
\end{aligned}
$$

Therefore,

$$
x^{2}+\frac{1}{x^{2}} \geqslant 2 .
$$

Let a be a positive real number. There is some real x such that $x^{2}=a$. Hence

$$
a+\frac{1}{a}=x^{2}+\frac{1}{x^{2}} \geqslant 2 .
$$

Another proof: The proposition we want to prove is a corollary of a more general theorem known as inequality of arithmetic and geometric means.

Another proof: The proposition we want to prove is a corollary of a more general theorem known as inequality of arithmetic and geometric means.

Theorem (AM-GM inequality for two real variables)
For two non-negative real numbers x and y,

$$
\sqrt{x y} \leqslant \frac{x+y}{2}
$$

Another proof: The proposition we want to prove is a corollary of a more general theorem known as inequality of arithmetic and geometric means.

Theorem (AM-GM inequality for two real variables)

For two non-negative real numbers x and y,

$$
\sqrt{x y} \leqslant \frac{x+y}{2}
$$

Corollary.
If a is positive real number then $a+\frac{1}{a} \geqslant 2$.

Another proof: The proposition we want to prove is a corollary of a more general theorem known as inequality of arithmetic and geometric means.

Theorem (AM-GM inequality for two real variables)
For two non-negative real numbers x and y,

$$
\sqrt{x y} \leqslant \frac{x+y}{2}
$$

Corollary.
If a is positive real number then $a+\frac{1}{a} \geqslant 2$.

Proof of corollary.

Set $x=a$ and $y=\frac{1}{a}$ in the theorem above.

Proof of theorem.

Suppose x and y are non-negative real numbers.

Proof of theorem.

Suppose x and y are non-negative real numbers. Since $x y$ is non-negative, $\sqrt{x y} \leqslant \frac{x+y}{2}$ if and only if $x y \leqslant\left(\frac{x+y}{2}\right)^{2}$.

Proof of theorem.

Suppose x and y are non-negative real numbers. Since $x y$ is non-negative, $\sqrt{x y} \leqslant \frac{x+y}{2}$ if and only if $x y \leqslant\left(\frac{x+y}{2}\right)^{2}$. The latter holds if and only if $4 x y \leqslant(x+y)^{2}$.

Proof of theorem.

Suppose x and y are non-negative real numbers. Since $x y$ is non-negative, $\sqrt{x y} \leqslant \frac{x+y}{2}$ if and only if $x y \leqslant\left(\frac{x+y}{2}\right)^{2}$. The latter holds if and only if $4 x y \leqslant(x+y)^{2}$. But the last statement is valid since

$$
(x+y)^{2}-4 x y=x^{2}+y^{2}+2 x y-4 x y=(x-y)^{2} \geqslant 0 .
$$

Here is a geometric explanation of the inequality $4 x y \leqslant(x+y)^{2}$:

Here is a geometric explanation of the inequality $4 x y \leqslant(x+y)^{2}$:

Here is a geometric explanation of the inequality $4 x y \leqslant(x+y)^{2}$:

Question: Does a geometric illustration/ explanation count as a proof?

A direct geometric proof of AM-GM inequality

A proof using calculus

Let a be a positive number. Hence we can find a real number t such that $a=e^{t}$.

A proof using calculus

Let a be a positive number. Hence we can find a real number t such that $a=e^{t}$. Therefore $a+\frac{1}{a}=e^{t}+e^{-} t$. Let $f(t)=e^{t}+e^{-} t$. Note that f is a function of $t \in \mathbb{R}$ and is symmetric about the y-axis, that is $f(t)=f(-t)$. Note also that $f^{\prime}(t)=e^{t}-e^{-t}$ which is positive for all $t \geqslant 0$. Therefore $f(t)$ is increasing for $t \geqslant 0$ and decreasing for $t \leqslant 0$ due to its symmetry about the y -axis. Hence the minimum of $f(t)$ occurs at $t=0$. Therefore, the minimum of $a+\frac{1}{a}$ occurs at $a=e^{0}=1$. Therefore, $a+\frac{1}{a} \geqslant 2$.

Theorem (J.J. Sylvester)

A finite collection \mathcal{P} of points in the plane has the property that any line through two of them passes through a third. Show that all the points in \mathcal{P} lie on a line.

Proof by contradiction.

Either \mathcal{P} is empty or there is a point in \mathcal{P}.

Proof by contradiction.

Either \mathcal{P} is empty or there is a point in \mathcal{P}. If \mathcal{P} is empty then the statement holds vacuously.

Proof by contradiction.

Either \mathcal{P} is empty or there is a point in \mathcal{P}. If \mathcal{P} is empty then the statement holds vacuously.Suppose \mathcal{P} is non-empty.

Proof by contradiction.

Either \mathcal{P} is empty or there is a point in \mathcal{P}. If \mathcal{P} is empty then the statement holds vacuously.Suppose \mathcal{P} is non-empty. Suppose the points in \mathcal{P} are not colinear.

Proof by contradiction.

Either \mathcal{P} is empty or there is a point in \mathcal{P}. If \mathcal{P} is empty then the statement holds vacuously.Suppose \mathcal{P} is non-empty. Suppose the points in \mathcal{P} are not colinear. Among pairs (P, ℓ) consisting of a line ℓ, passing through two different points of \mathcal{P}, and a point P of \mathcal{P} not on that line, choose one, say $\left(P_{0}, \ell_{0}\right)$, which minimizes the distance d from P to ℓ.

Proof by contradiction.

Either \mathcal{P} is empty or there is a point in \mathcal{P}. If \mathcal{P} is empty then the statement holds vacuously.Suppose \mathcal{P} is non-empty. Suppose the points in \mathcal{P} are not colinear. Among pairs (P, ℓ) consisting of a line ℓ, passing through two different points of \mathcal{P}, and a point P of \mathcal{P} not on that line, choose one, say $\left(P_{0}, \ell_{0}\right)$, which minimizes the distance d from P to ℓ. Note that d is well-defined since \mathcal{P} is non-empty and finite and there is some pair (P, ℓ) where P does not lie on ℓ.

Proof by contradiction.

Either \mathcal{P} is empty or there is a point in \mathcal{P}. If \mathcal{P} is empty then the statement holds vacuously.Suppose \mathcal{P} is non-empty. Suppose the points in \mathcal{P} are not colinear. Among pairs (P, ℓ) consisting of a line ℓ, passing through two different points of \mathcal{P}, and a point P of \mathcal{P} not on that line, choose one, say (P_{0}, ℓ_{0}), which minimizes the distance d from P to ℓ. Note that d is well-defined since \mathcal{P} is non-empty and finite and there is some pair (P, ℓ) where P does not lie on ℓ. Let H be the foot of the perpendicular from P_{0} to L_{0}. There are (by assumption) at least three points P, Q, R on ℓ_{0} belonging to \mathcal{P}. Hence two of these, say, Q and R are on the same side of H. Let Q be nearer to H than R. Then the distance from Q to the line determined by P_{0} and R is less than d since $\left|Q H^{\prime}\right| \times\left|P_{0} R\right| \leqslant\left|P_{0} H\right| \times|H R|$ and $|H R| \leqslant\left|P_{0} R\right|$. This contradicts the definition of d. Therefore, the points of \mathcal{P} must be colinear.

Later in the course we will see more complicated theorems and proofs where our intuition and what proofs say begin to diverge.

Theorem

For any positive real ϵ, there is a collection $\left(U_{n} \mid n \in \mathbb{N}\right)$ of open intervals such that together they cover all the rational numbers between 0 and 1 and the sum of the length of these intervals is less than ϵ.

Later in the course we will see more complicated theorems and proofs where our intuition and what proofs say begin to diverge.

Theorem

For any positive real ϵ, there is a collection $\left(U_{n} \mid n \in \mathbb{N}\right)$ of open intervals such that together they cover all the rational numbers between 0 and 1 and the sum of the length of these intervals is less than ϵ.

The End

THANKS FOR YOUR ATTENTION!

